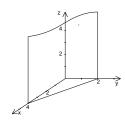
Trabajo Práctico Nº 1: Funciones de varias variables

Representación de superficies:

1. a) Plano

Trazas: Plano "xy": $y = -\frac{1}{2}x + 2$; plano "xz": x = 4; plano "yz": y = 2.

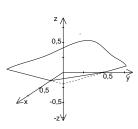
Intersecciones con los ejes coordenados: eje x: x = 4; eje y: y = 2; eje z: no existe.



b) Plano

Trazas: Plano "xy":
$$y = -2x + 1/2$$
; plano "xz": $z = \frac{4}{3}x - \frac{1}{3}$; plano "yz": $z = \frac{2}{3}y - \frac{1}{3}$

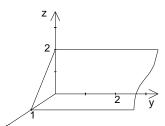
Intersecciones con los ejes coordenados: eje x: $x = \frac{1}{4}$; eje y: $y = \frac{1}{2}$; eje z: $-\frac{1}{3}$.



c)Plano paralelo al eje y: 2x + z = 2

Trazas: Plano "xy": x = 1; plano "xz": z = -2x + 2; plano "yz": z = 2.

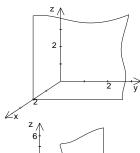
Intersecciones con los ejes coordenados: eje x: x = 1; eje y: no tiene; eje z: z = 2.



d) Plano

Trazas: Plano "xy": x = 2; plano "xz": x = 2; plano "yz": no tiene.

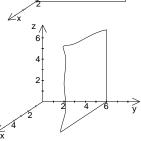
Intersecciones con los ejes coordenados: eje x: x = 2; eje y: no tiene; eje z: no tiene.



e) Plano

Trazas: Plano "xy": y = 6; plano "xz": no tiene; plano "yz": y = 6.

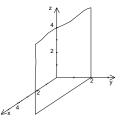
Intersecciones con los ejes coordenados: eje x: no tiene; eje y: y = 6; eje z: no tiene.



f) Ecuación plano paralelo al plano xz: y = 2

Trazas: Plano "xy": y = 2; plano "xz": no tiene; plano "yz": y = 2.

Intersecciones con los ejes coordenados: eje x: no tiene; eje y: y = 2; eje z: no tiene.



g) Ecuación plano coordenado "xy": z = 0; plano coordenado "xz": y = 0; plano coordenado "yz": x = 0.

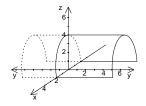
h) Superficie cilindrica elíptica

Trazas: Plano "xy":
$$x = -2 \lor x = 2$$
;

plano "xz":
$$\frac{x^2}{4} + \frac{z^2}{16} = 1 \land z \ge 0$$
; plano "yz": $z = 4$.

Intersecciones con los ejes coordenados:

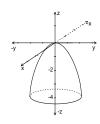
eje x: $x = -2 \lor x = 2$; eje y: no tiene; eje z: z = 4.



i) Paraboloide elíptico

Trazas: Plano "xy": $4x^2 + y^2 = 0$; plano "xz": $z = -2x^2$; plano "yz": $z = -\frac{1}{2}y^2$

Intersecciones con los ejes coordenados: eje x: x = 0; eje y: y = 0; eje z: z = 0.

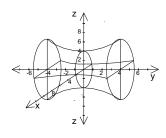


j) Hiperboloide de 1 hoja

Trazas: Plano "xy":
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$
; plano "xz": $\frac{x^2}{4} + \frac{z^2}{16} = 1$; plano "yz": $-\frac{y^2}{9} + \frac{z^2}{16} = 1$

Intersecciones con los ejes coordenados:

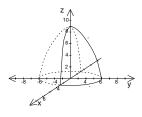
eje x:
$$x = -2 \lor x = 2$$
; eje y: no tiene; eje z: $z = -4 \lor z = 4$.



k) Paraboloide elíptico

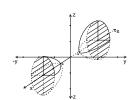
Trazas: Plano "xy":
$$\frac{x^2}{9} + \frac{y^2}{36} = 1$$
; plano "xz": $z = -x^2 + 9$; plano "yz": $z = -\frac{y^2}{4} + 9$

Intersecciones con los ejes coordenados: eje x: $x = -3 \lor x = 3$; eje y: $y = -6 \lor y = 6$; eje z: z = 9.

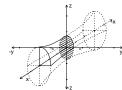


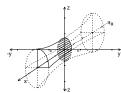
2)

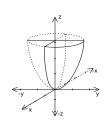
- a) Hiperboloide de 1 hoja (no corta al eje "z")
- **b**) Elipsoide
- c) Hiperboloide de 2 hojas (no corta al eje "y")



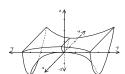
- **d)** Hiperboloide de 1 hoja (no corta al eje "x")
- e) No tiene representación
- f) Paraboloide elíptico

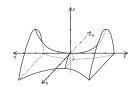




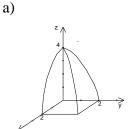


- g) Paraboloide hiperbólico
- h) Paraboloide hiperbólico

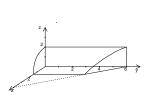




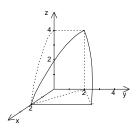
3)



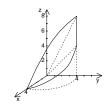
b)



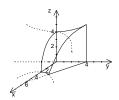
c)



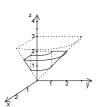
d)



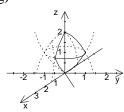
e)



f)



g)



h) $y^2 + z^2 = -4x$. Superficie: paraboloide de revolución.

Funciones de dos variables

2) a) -1 b) 0 c) 0 d) 0 e)
$$\frac{a^2}{a^4-1}$$

3) a) La función no está definida.

b) La función está definida.

b)
$$A' = \{(x; y)/|x - y| \le 4 \land |y - 4| \le 2\}$$

c)
$$A_i = \{(x; y)/|x-y| < 4 \land |y-4| < 2\}$$

d) No es conjunto abierto ni cerrado.

e)
$$A_f = \{(x, y)/(|x - y| = 4 \land |y - 4| < 2) \lor (|x - y| \le 4 \land |y - 4| = 2)\}$$

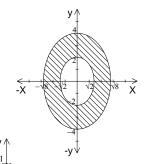
f) Conjunto Conexo.

b)
$$B' = B$$

c)
$$B_i = \{(x; y)/2 < x^2 + \frac{y^2}{2} < 8\}$$

d) El conjunto es cerrado.
e)
$$B_f = \{(x; y) / \frac{x^2}{2} + \frac{y^2}{4} = 1 \lor \frac{x^2}{8} + \frac{y^2}{16} = 1\}$$

f) Conjunto conexo.



b)
$$C' = \{(x; y)/x^2 + y^2 \le 1 \land y \ge 0\}$$

c) $C_i = \{(x; y)/x^2 + y^2 \le 1 \land y > 0\}$

c)
$$C_i = \{(x; y)/x^2 + y^2 < 1 \land y > 0\}$$

d) No es conjunto abierto ni cerrado.
e)
$$C_f = \{(x; y)/(x^2 + y^2 = 1 \land y > 0) \lor (x^2 + y^2 \le 1 \land y = 0)\}$$

f) Conjunto conexo.

D) a)

b)
$$D' = \{(x; y)/0 \le x \le 2 \land 0 \le y \le 1\}$$

c)
$$D_i = \{(x; y)/0 < x < 2 \land 0 < y < 1\}$$

d) No es conjunto abierto ni cerrado.

e)
$$D_f = \{(x; y)/[(x = 0 \lor x = 2) \land 0 < y < 1] \lor [0 \le x \le 2 \land (y = 0 \lor y = 1)]\}$$

f) Conjunto conexo.

E) a)

$$E = \{(x; y)/x^2 + y^2 > 0\} \cap \{(x; y)/x^2 + y^2 < 1\}$$

b)
$$E' = \{(x; y)/x^2 + y^2 \ge 0 \land x^2 + y^2 \le 1\}$$

c)
$$E_i = \{(x; y)/x^2 + y^2 > 0 \land x^2 + y^2 < 1\}$$

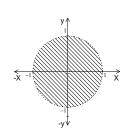
d) El conjunto es abierto.

e)
$$E_f = \{(x; y)/x^2 + y^2 = 0 \lor x^2 + y^2 = 1\}$$

f) Conjunto conexo.

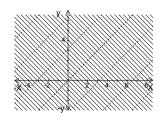
5. a)
$$A = \{(x; y)/y \ge x^2 \land y \le x + 2\}$$

b)
$$B = \{(x; y) / \frac{x^2}{36} + \frac{y^2}{16} \le 1 \land x^2 + y^2 \ge 1\}$$

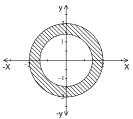


Dominio e imagen de funciones de dos variables

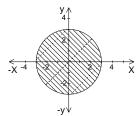
a) $Dom = \{(x; y)/y \neq x + k\pi, k \in \mathbb{Z}\};$ $Rg = (-\infty; -1] \cup [1; \infty).$



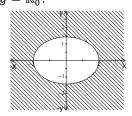
c) $Dom = \{(x; y)/2 \le x^2 + y^2 \le 4\};$ $Rg = [0; \frac{\pi}{2}]$



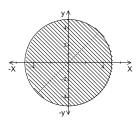
e) $Dom = \{(x; y)/x^2 + y^2 \le 9 \land y \ne x + k\pi, k \in \mathbb{Z}\};$ $Rg = \mathbb{R}.$



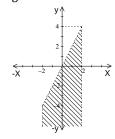
b) $Dom = \{(x; y) / \frac{x^2}{4} + \frac{y^2}{2} \ge 1\};$ $Rg = \mathbb{R}_0^+.$



d) $Dom = \{(x; y)/x^2 + y^2 \le 25 \land x \ne y\};$ $Rg = \mathbb{R}.$

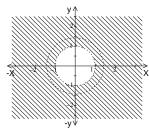


f) $Dom = \{(x; y)/y < 2x \land x^2 < 4\};$ $Rg = \mathbb{R}.$

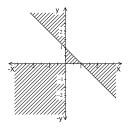


g)
$$Dom = \{(x; y)/x^2 + y^2 \neq 2 \land x^2 + y^2 > 1\};$$

 $Rg = \mathbb{R} - \{0\}.$

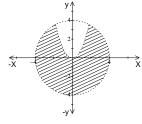


i)
$$Dom = \{(x; y)/(xy \ge 0 \land y \le -x + 1) \lor (xy \le 0 \land y \ge -x + 1)\}; Rg = \mathbb{R}_0^+.$$



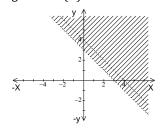
k)
$$Dom = \{(x; y)/y < x^2 \land x^2 + y^2 < 16\};$$

 $Rg = \mathbb{R}.$

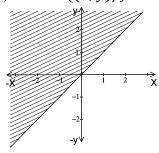


m)
$$Dom = \{(x; y)/y \neq -x + 4 \land y > -x + 3\};$$

 $Rg = \mathbb{R} - \{0\}.$

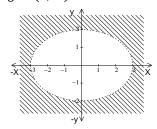


a)
$$Dom = \{(x; y)/y \ge -x\}$$

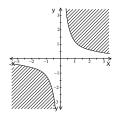


h)
$$Dom = \{(x; y) / \frac{x^2}{9} + \frac{y^2}{4} > 1\};$$

 $Rg = (0; \infty).$

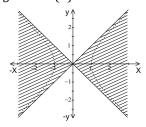


j)
$$Dom = \{(x; y)/xy \ge 5\}; Rg = \mathbb{R}_0^+.$$

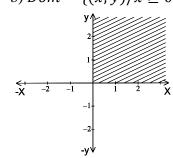


l)
$$Dom = \{(x; y)/x^2 - y^2 \neq 1 \land x^2 > y^2\};$$

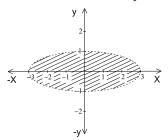
 $Rg = \mathbb{R} - \{0\}.$



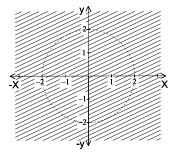
b)
$$Dom = \{(x; y)/x \ge 0 \land y \ge 0\}$$



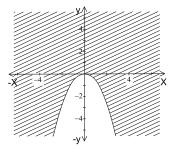
c)
$$Dom = \{(x; y) / \frac{x^2}{9} + y^2 < 1\}$$



e)
$$Dom = \{(x; y)/x^2 + y^2 \neq 4\}$$



g)
$$Dom = \{(x; y)/y \ge -x^2\}$$



i)
$$Dom = \{(x; y; z)/x^2 + y^2 + z^2 \le 1\}$$
)

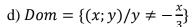


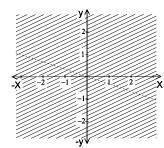
3) a) 0; b) 1; c)
$$Dom = \{(x; y)/y > -x + 1\}$$
; d) $Img = \mathbb{R}$ 4) a) 1; b) $Dom = \mathbb{R}^2$; c) $Img = \mathbb{R}^+$;

5) a)
$$\sqrt{11}$$
; b) $Dom = \{(x; y) / \frac{x^2}{4} + \frac{y^2}{9} \le 1\}$; c) $Img = [0; 6]$

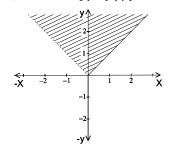
6) a) 0; b)
$$Dom = \{(x; y)/z > -x + y\}$$
; c) $Img = \mathbb{R}$

6) a) 0; b)
$$Dom = \{(x; y)/z > -x + y\}$$
; c) $Img = \mathbb{R}$
7) a) $1/5$; b) $Dom = \{(x; y)/x^2 + y^2 + z^2 > 1\}$; c) $Img = \mathbb{R}^+$

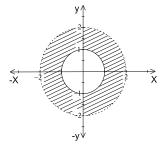




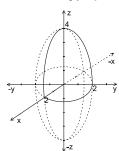
f)
$$Dom = \{(x; y)/y \ge x \land y > -x\}$$



h)
$$Dom = \{(x; y)/x^2 + y^2 \ge 1 \land x^2 + y^2 < 4\}$$



j)
$$Dom = \{(x; y; z) / \frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{16} < 1\}$$



Curvas de nivel

1.

a)
$$z = -2 \rightarrow y = -\frac{1}{2}x^2 - \frac{1}{2}$$

 $z = -1 \rightarrow y = -x^2 - 1$
 $z = 0 \rightarrow x = 0$
 $z = 1 \rightarrow y = x^2 + 1$
 $z = 2 \rightarrow y = \frac{1}{2}x^2 + \frac{1}{2}$

b)
$$z = -2 \rightarrow y = -2x^{2} - 1$$

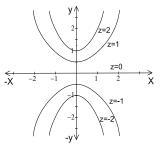
 $z = -1 \rightarrow y = -x^{2}$
 $z = 0 \rightarrow y = 1$
 $z = 1 \rightarrow y = x^{2} + 2$
 $z = 2 \rightarrow y = 2x^{2} + 3$

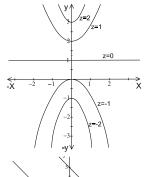
c)
$$z = -2 \rightarrow \nexists$$
 curva de nivel
 $z = -1 \rightarrow y = \nexists$ curva de nivel
 $z = 0 \rightarrow y = -x - 1$
 $z = 1 \rightarrow y = -x$
 $z = 2 \rightarrow y = -x + 3$

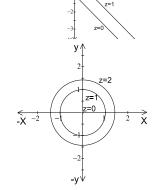
d)
$$z = -2 \rightarrow \nexists$$
 curva de nivel
 $z = -1 \rightarrow \nexists$ curva de nivel
 $z = 0 \rightarrow x^2 + y^2 = 0$
 $z = 1 \rightarrow x^2 + y^2 = 1$
 $z = 2 \rightarrow x^2 + y^2 = 2$

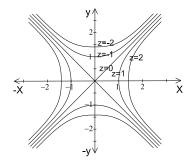
e)
$$z = -2 \rightarrow \frac{-x^2}{2} + \frac{y^2}{2} = 1$$

 $z = -1 \rightarrow -x^2 + y^2 = 1$
 $z = 0 \rightarrow y = \pm x$
 $z = 1 \rightarrow x^2 - y^2 = 1$
 $z = 2 \rightarrow \frac{x^2}{2} - \frac{y^2}{2} = 1$









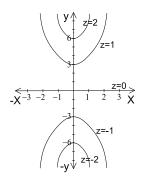
a)
$$z = -2 \rightarrow y = -2x^2 - 6$$

$$z = -1 \rightarrow y = -x^2 - 3$$

$$z = 0 \rightarrow y = 0$$

$$z = 1 \rightarrow y = x^2 + 3$$

$$z = 2 \rightarrow y = 2x^2 + 6$$



b)

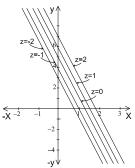
$$z = -2 \rightarrow y = -4x + 3$$

$$z = -1 \rightarrow y = -4x + 4$$

$$z = 0 \rightarrow y = -4x + 5$$

$$z = 1 \rightarrow y = -4x + 6$$

$$z = 2 \rightarrow y = -4x + 7$$



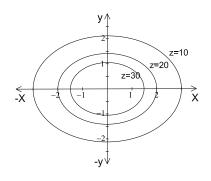
3.
$$z = T(x; y)$$

3.
$$z = T(x; y)$$

 $z = 10 \rightarrow \frac{x^2}{9} + \frac{y^2}{9/2} = 1$

$$z = 20 \to \frac{x^2}{4} + \frac{y^2}{2} = 1$$

$$z = 30 \rightarrow \frac{x^2}{7/3} + \frac{y^2}{7/6} = 1$$



4.
$$x^2 + y^2 = r^2 - (\frac{c}{y})^2$$

5. Ec. a y gráf. I; Ec. b y gráf. III; Ec. c y graf. II.

TRABAJO PRACTICO Nº 2: Límites

Límites

$$\begin{split} L &= \lim_{(x,y) \to (x_1,y_1)} f(x,y); \qquad L_1 = \lim_{x \to x_1} \lim_{y \to y_1} f(x,y); \qquad L_2 = \lim_{y \to y_1} \lim_{x \to x_1} f(x,y); \\ L_r &= \lim_{x \to x_1} \lim_{y \to g(x)} f(x,y). \end{split}$$

1)
$$L = \nexists$$
; $L_1 = 1/2$; $L_2 = -1/2$. 2) $L = \nexists$; $L_1 = -\frac{2}{3}$; $L_2 = -1/2$

3)
$$L = \nexists$$
; $L_1 = 1$; $L_2 = -3/2$. 4) $L = \nexists$; $L_1 = 0$; $L_2 = 0$

5)
$$L = 3$$
; $L_1 = 3$; $L_2 = 3$. 6) $L = 0$; $L_1 = 0$; $L_2 = 0$

7)
$$L = \nexists$$
; $L_1 = 0$; $L_2 = 0$; sobre $y = x$: $L_r = 1$

8)
$$L = \nexists$$
; $L_1 = 3$; $L_2 = 1$. 9) $L = 0$; $L_1 = 0$; $L_2 = 0$

10)
$$L = -1$$
; $L_1 = -1$; $L_2 = -1$. 11) $L = 0$; $L_1 = 0$; $L_2 = 0$

12)
$$L = \mathbb{Z}$$
; $L_1 = 0$; $L_2 = 0$; sobre $y = x$: $L_r = 1/2$

13)
$$L = 0; L_1 = 0; L_2 = 0$$

14)
$$L = ∄$$
; $L_1 = 0$; $L_2 = 0$; sobre $y = x^2$: $L_r = 1/2$

15)
$$L = 1$$
; $L_1 = 1$; $L_2 = 1$. 16) $L = 3/2$; $L_1 = 3/2$; $L_2 = 3/2$

17)
$$L = \mathbb{A}$$
; $L_1 = 3/4$; $L_2 = -2/5$; sobre $y = 4x$: $L_r = -11/16$

18)
$$L = 0$$
; $L_1 = 0$; $L_2 = 0$

Continuidad

1) a)
$$f(0; 0) = 3$$
; $L = 0$; $f(0; 0) \neq L \Rightarrow f(x; y)$ es discontínua en $(0; 0)$.

b)
$$f(0; 0) = 0$$
; $\not\equiv L \Rightarrow f(x; y)$ es discontínua en $(0; 0)$.

c)
$$f(0; 0) = 0$$
; $L = 0$; $f(0; 0) = L \Rightarrow f(x; y)$ es contínua en $(0; 0)$.

3) a)
$$\{(x;y)/xy \neq 0\}$$
; b) $\{(x;y)/y < x\}$; c) $\{(x;y)/\frac{x^2}{4} - \frac{y^2}{4} < 1\}$
d) $\{(x;y)/(x+y)^2 \neq \pi/2 + k\pi; k \in \mathbb{Z}\}$; e) $\{(x;y)/y \neq -3/5x\}$

d)
$$\{(x;y)/(x+y)^2 \neq \pi/2 + k\pi; k \in \mathbb{Z}\}$$
; e) $\{(x;y)/y \neq -3/5x\}$

$$f) \{(x; y)/y \neq 0\}$$

4) a) No se puede redefinir la función porque esta no posee límite; b)
$$f(0;0) = 0$$
;

c)
$$f(0;0) = 2/5$$

Trabajo Práctico Nº 3: Derivadas y diferenciales primeras

Derivadas parciales

a)
$$F_x'(1;2) = 48$$
; $F_y'(1;2) = 36$. b) $F_x'(2;1) = 8$; $F_y'(2;1) = -8$. c) $F_x'(0;0) = 1$; $F_y'(0;0) = 1$.

d)
$$F_x'(2;3) = \sqrt{5}/10$$
; $F_y'(2;3) = \sqrt{5}/10$. e) $F_x'(2;2) = 6$; $F_y'(2;2) = 15$

f)
$$F_x'(1;1) = \sqrt{2}/2$$
; $F_y'(1;1) = \sqrt{2}/2$

2) a)
$$F'_x = e^{x-y^2}$$
; $F'_y = -2ye^{x-y^2}$

b)
$$F'_x = \frac{3}{2(3x-y)\sqrt{\ln(3x-y)}}$$
; $F'_y = \frac{-1}{2(3x-y)\sqrt{\ln(3x-y)}}$

c)
$$F'_x = \frac{y}{3\sqrt[3]{x^2y}} sen(xy) + y\sqrt[3]{xy^2} cos(xy); F'_y = \frac{2x}{3\sqrt[3]{x^2y}} sen(xy) + x\sqrt[3]{xy^2} cos(xy)$$

d)
$$F'_x = 2.4^y xy + \frac{1}{\sqrt{y^2 - x^2}}$$
; $F'_y = x^2 4^y (y. \ln 4 + 1) - \frac{x}{y.\sqrt{y^2 - x^2}}$

e)
$$F_x' = \frac{xy^2 e^{xy} [x^2 y + x(2y^2 + 1) + 4y]}{(x + 2y)^2}$$
; $F_y' = \frac{x^2 y e^{xy} (x^2 y + 2x(y^2 + 1) + 2y)}{(x + 2y)^2}$

d)
$$F'_{x} = \frac{1}{3\sqrt[3]{x^{2}y}} \frac{1}{y\sqrt[3]{y^{2}-x^{2}}} \frac{1}{y\sqrt[3]{y^{2}-x^{2}}} \frac{1}{y\sqrt[3]{x^{2}+y^{2}}} \frac{$$

g)
$$F_x' = \frac{\left(\frac{2xy}{1+x^4} + \frac{1}{x}\right)(xy^2 + 1) - [y.\operatorname{arctg}(x^2) + \ln(2x)]y^2}{(xy^2 + 1)^2}$$

$$F_{y}' = -\frac{(xy^2 - 1)\operatorname{arctg}(x^2) + 2xy\ln(2x)}{x^2 + 2xy\ln(2x)}$$

$$F_{y} = \frac{(xy^{2}+1)^{2}}{(xy^{2}+x)(2y^{2}+x)-x}; F_{y}' = \frac{3x^{2}e^{xy}(x^{2}+2xy^{2}-4y)}{(2y^{2}+x)^{2}}$$

i)
$$F'_x = e^{xy} \left[y \cdot \tan\left(\frac{x}{y}\right) + \frac{1}{y \cdot \cos^2\left(\frac{x}{y}\right)} \right]; F'_y = e^{xy} \left[x \cdot \tan\left(\frac{x}{y}\right) - \frac{x}{y^2 \cdot \cos^2\left(\frac{x}{y}\right)} \right]$$

j)
$$F'_x = \frac{2y^2 e^{xy} (xy - y^2 - 1)}{(x - y)^2}$$
; $F'_y = \frac{2y e^{xy} [(2 + yx)(x - y) + y]}{(x - y)^2}$
 $F'_x(2; 1) = 0$; $F'_y(2; 1) = 10e^2$

$$F_x'(2;1) = 0; F_y'(2;1) = 10e^2$$

3) a)
$$x. z_x' + y. z_y' = x. \left[\frac{\sqrt{x}.\cos(\frac{x}{y})}{y} + \frac{\sin(\frac{x}{y})}{2\sqrt{x}} \right] + y. \frac{-\sqrt{x}.\cos(\frac{x}{y})}{y^2} = \frac{\sqrt{x^3}.\cos(\frac{x}{y})}{y} + \frac{\sqrt{x}.\sin(\frac{x}{y})}{2} - \frac{\sqrt{x^3}.\cos(\frac{x}{y})}{y} = \frac{\sqrt{x}}{\sqrt{x}} + \frac{\sqrt{x}}{\sqrt{x}} +$$

$$\frac{\sqrt{x}.\mathrm{sen}\left(\frac{x}{y}\right)}{2} = \frac{z}{2}$$

b)
$$x. z_x' + y. z_y' = x. \left[\left(2x + \frac{y^3}{x^2} \right) . sen \left(\frac{y}{x} \right) - y. \cos \left(\frac{y}{x} \right) \right] + y. \left[(x + 2y) . \cos \left(\frac{y}{x} \right) - \frac{y^2 . sen \left(\frac{y}{x} \right)}{x} \right] = \frac{(2x^3 + y^3) . sen \left(\frac{y}{x} \right)}{x} - xy. \cos \left(\frac{y}{x} \right) + y(x + 2y) . \cos \left(\frac{y}{x} \right) - \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} - \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} - \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^2 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 . sen \left(\frac{y}{x} \right)}{x} = 2x^3 . sen \left(\frac{y}{x} \right) + \frac{y^3 .$$

$$xy.\cos\left(\frac{y}{x}\right) + xy.\cos\left(\frac{y}{x}\right) + 2y^2\cos\left(\frac{y}{x}\right) - \frac{y^3.sen\left(\frac{y}{x}\right)}{x} = 2y^2\cos\left(\frac{y}{x}\right) + 2x^2sen\left(\frac{y}{x}\right) = 2[y^2\cos\left(\frac{y}{x}\right) + xy.sen\left(\frac{y}{x}\right)] = 2z$$

c)
$$x \cdot z'_x + y \cdot z'_y = x \cdot \frac{x}{x^2 + y^2} + y \cdot \frac{y}{x^2 + y^2} = \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2} = \frac{x^2 + y^2}{x^2 + y^2} = 1$$

4)
$$Z_{\nu}'(0;4) = 0$$

5) a)
$$-\frac{\sqrt{6}}{3}$$
 b) $-\frac{3\sqrt{2}}{2}$

Diferenciales

1) a)
$$dz = (6x^2 - 4y^2)dx + (9y^2 - 8xy)dy$$
. b) $dz = 2x \cdot \cos(2y) dx - 2x^2 \cdot \sin(2y) dy$

c)
$$dz = [\ln(x+y) + \frac{x-y}{x+y}]dx + [\frac{x-y}{x+y} - \ln(x+y)]dy$$
. d) $du = y^2z^3dx + 2xyz^3dy + 3xy^2z^2dz$

2)
$$\Delta u = 91/4 = 22,75$$
; $du = 112/5 = 22,4$

3)
$$\Delta z = 99/1250$$
; $dz = 2/25$

4)
$$dz = 1$$

5)
$$dz = -0.1516$$

8) La función no es diferenciable en el origen porque no es contínua.

9)
$$\varepsilon_a = 8.4$$
. $\varepsilon_{\%} = 0.75\%$.

10) Altura:
$$\varepsilon_a = \frac{\sqrt{3}}{15}$$
; $\varepsilon_\% = 1,11\%$. Volumen: $\varepsilon_a = \frac{67 + 96\sqrt{3}}{10}\pi$; $\varepsilon_\% = 3,35\%$.

$$11) - 0.011$$

$$12) - 41/900; -0.6212\%$$

14)
$$16.31 \, cm/seg^2$$

14) 16,31 cm/seg²
15)
$$\frac{dt}{t} = \frac{dv}{v} + \frac{dp}{p}$$

$$16) -54,49 \text{Kg/m}^2$$

Trabajo Práctico Nº 4: Funciones compuestas e implícitas

Funciones compuestas

2) 0

3)
$$\frac{\partial z}{\partial u} = 1001$$
; $\frac{\partial z}{\partial v} = 413$

4) $\frac{dz}{dt} = 2$

5) $\frac{dz}{dt} = -9$

6) $\frac{du}{dt} = 18$

$$4)\frac{dz}{dt} = 2$$

$$5)\frac{dz}{dt} = -9$$

6)
$$\frac{du}{dt} = 18$$

7)
$$\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \left[\left(lny + \frac{y}{x} \right) \cdot e^{u+v} + \left(\frac{x}{y} + lnx \right) \cdot e^{u-v} \right] + \left[\left(lny + \frac{y}{x} \right) \cdot e^{u+v} + \left(\frac{x}{y} + lnx \right) \cdot \left(-e^{u-v} \right) \right] = 0$$

$$2\left(\ln y + \frac{y}{x}\right)e^{u+v}$$

$$8) Z'_u + Z'_v = \frac{y - x}{x^2 + y^2} + \frac{x + y}{x^2 + y^2} = \frac{2y}{x^2 + y^2} = \frac{2(u - v)}{(u + v)^2 + (u - v)^2} = \frac{2(u - v)}{u^2 + 2uv + v^2 + u^2 - 2uv + v^2} = \frac{2(u - v)}{2(u^2 + v^2)} = \frac{u - v}{u^2 + v^2}$$

$$9) -12$$

10)
$$40e^2 + 20e \approx 349,92788$$

1) a)
$$\frac{dy}{dx} = \frac{1}{v^4 + v^2 + 1}$$
; b) $\frac{dy}{dx} = \frac{6\sqrt[3]{y^2}}{3\sqrt[6]{v} + 2}$; c) $\frac{dy}{dx} = \frac{x^2 - ay}{ax - v^2}$; d) $\frac{dy}{dx} = \frac{y}{x}$; e) $\frac{dy}{dx} = \frac{ctg(xy)}{x^2} - \frac{y}{x}$

2) a)
$$2^3 - (-2)^3 + 4.2$$
. $(-2) = 0$; $\frac{dy}{dx} = 1$; b) $2.2 - \sqrt{2.2.4} + 4 = 4$; $\frac{dy}{dx} = -2$; c) $e^0 \cos(0 + 0) - 1$

2) a)
$$2^3 - (-2)^3 + 4.2$$
. $(-2) = 0$; $\frac{dy}{dx} = 1$; b) $2.2 - \sqrt{2.2.4} + 4 = 4$; $\frac{dy}{dx} = -2$; c) $e^0 \cos(0+0) - 0 = 1$; $\frac{dy}{dx} = 1$ d) $2^2 + 2.3 + 2.3^2 = 28$; $\frac{dy}{dx} = \frac{-1}{2}$; e) $\sqrt{2.2} + \sqrt{3.3} = 5$; $\frac{dy}{dx} = -1$; f) $a^3 - a$. a . $a + \frac{1}{2}$

$$3aa^2 = 3a^3; \frac{dy}{dx} = -\frac{2}{5}$$

3) a)
$$\frac{\partial z}{\partial x} = -1;$$
 $\frac{\partial z}{\partial y} = -1;$ b) $\frac{\partial z}{\partial x} = \frac{z}{1-2z};$ $\frac{\partial z}{\partial y} = \frac{3z}{1-2z};$ c) $\frac{\partial z}{\partial x} = -\frac{z[2y \cdot \cos(xyz) + 3x^2]}{x[2y \cdot \cos(xyz) + x^2]};$ d) $\frac{\partial z}{\partial x} = \frac{yz^2 e^{xy-2} + 2}{1-2ze^{xy-2}};$ $\frac{\partial z}{\partial y} = \frac{xz^2 e^{xy-2} - 4}{1-2ze^{xy-2}}$ 4) $\frac{dy}{dz} = -\frac{1}{4y};$ $\frac{dz}{dy} = -4y;$ b) $\frac{\partial u}{\partial x} = \frac{12v-1}{8uv-1};$ $\frac{\partial v}{\partial x} = \frac{3-2u}{8uv-1};$ $\frac{\partial u}{\partial y} = \frac{2(2v+1)}{8uv-1};$ $\frac{\partial v}{\partial y} = \frac{4u+1}{8uv-1}$ 5) $\frac{\partial u}{\partial x} = \frac{1-2ux}{x^2+y^2};$ $\frac{\partial v}{\partial x} = -\frac{2vx}{x^2+y^2};$ $\frac{\partial u}{\partial y} = -\frac{2uy}{x^2+y^2};$ $\frac{\partial v}{\partial y} = -\frac{2vy+1}{x^2+y^2}$

$$\frac{\partial z}{\partial y} = \frac{3y^2 - 2xz.\cos(xyz)}{x[2y.\cos(xyz) + x^2]}; d) \frac{\partial z}{\partial x} = \frac{yz^2 e^{xy-2} + 2}{1 - 2ze^{xy-2}}; \frac{\partial z}{\partial y} = \frac{xz^2 e^{xy-2} - 4}{1 - 2ze^{xy-2}}$$

4)
$$\frac{dy}{dz} = -\frac{1}{4y}$$
; $\frac{dz}{dy} = -4y$; b) $\frac{\partial u}{\partial x} = \frac{12v-1}{8uv-1}$; $\frac{\partial v}{\partial x} = \frac{3-2u}{8uv-1}$; $\frac{\partial u}{\partial y} = \frac{2(2v+1)}{8uv-1}$; $\frac{\partial v}{\partial y} = \frac{4u+1}{8uv-1}$

5)
$$\frac{\partial u}{\partial x} = \frac{1 - 2ux}{x^2 + y^2}$$
; $\frac{\partial v}{\partial x} = -\frac{2vx}{x^2 + y^2}$; $\frac{\partial u}{\partial y} = -\frac{2uy}{x^2 + y^2}$; $\frac{\partial v}{\partial y} = -\frac{2vy + 1}{x^2 + y^2}$

Trabajo Práctico Nº 5: Derivadas y diferenciales sucesivas

1) a)
$$Z_{xy}^{"} = \frac{-2x}{(x^2+y^2)^2} = Z_{yx}^{"}$$
; b) $Z_{xy}^{"} = \frac{(ad-bc)(cx-dy)}{(cx+dy)^3} = Z_{yx}^{"}$

2) a)
$$Z_x' = -\frac{y}{x^2 + y^2}$$
; $Z_y' = \frac{x}{x^2 + y^2}$; $Z_{xx}'' = \frac{2xy}{(x^2 + y^2)^2}$; $Z_{xy}'' = \frac{y^2 - x^2}{(x^2 + y^2)^2} = Z_{yx}''$; $Z_{yy}'' = -\frac{2xy}{(x^2 + y^2)^2}$

b)
$$Z_x = y^2 x^{y^2 - 1}$$
; $Z_y = 2y x^{y^2} \ln(x)$; $Z_{xx} = y^2 x^{y^2 - 2} (y^2 - 1)$;

$$Z_{xy}^{"} = x^{y^2 - 1} [2y^3 \ln(x) + 2y] = Z_{yx}^{"}; Z_{yy}^{"} = x^{y^2} [4y^2 \ln^2(x) + 2\ln(x)]$$

c)
$$Z_x' = e^x \ln(y) + \frac{sen(y)}{x}$$
; $Z_y' = \frac{e^x}{y} + \ln(x) \cdot \cos(y)$; $Z_{xx}'' = e^x \ln(y) - \frac{sen(y)}{x^2}$; $Z_{xy}'' = \frac{e^x}{y} + \frac{cos(y)}{x} = \frac{e^x}{y} + \frac{cos(y)}{y} = \frac{e^x$

$$Z_{yx}^{"}; Z_{yy}^{"} = -\frac{e^x}{v^2} - \ln(x) \operatorname{sen}(y)$$

d)
$$Z_{x}^{'} = -\frac{sen[\ln(xy)]}{x};$$
 $Z_{y}^{'} = -\frac{sen[\ln(xy)]}{y};$ $Z_{xx}^{''} = \frac{sen[\ln(xy)]}{x^{2}} - \frac{cos[\ln(xy)]}{x^{2}};$ $Z_{yy}^{''} = \frac{sen[\ln(xy)]}{y^{2}} - \frac{cos[\ln(xy)]}{y^{2}};$ $Z_{xy}^{''} = -\frac{cos[\ln(xy)]}{xy} = Z_{yx}^{''}$

3) a)
$$Z_{xx}^{"} - 4Z_{yy}^{"} = [-4\cos(2x+y) - 4\sin(2x-y)] - 4[-\cos(2x+y) - \sin(2x-y)] = -4[\cos(2x+y) + \sin(2x-y)] + 4[\cos(2x+y) + \sin(2x-y)] = 0$$

$$-4[\cos(2x+y) + sen(2x-y)] + 4[\cos(2x+y) + sen(2x-y)] = 0$$
b) $Z''_{xx} + Z''_{yy} = [-e^{-t}sen(x)] + [-e^{-t}cos(y)] = -e^{-t}[sen(x) + cos(y)] = Z'_{t}$

Diferenciales Sucesivas

1)
$$d^2z = (48x^2y^2 + 2y^3)(dx)^2 + [4xy(16x^2 + 3y)]dx.dy + (8x^4 + 6x^2y)(dy)^2$$

2)
$$d^3z = \left[4xe^{x^2+y^2}(2x^2+3)\right](dx)^3 + \left[12ye^{x^2+y^2}(2x^2+1)\right](dx)^2dy + \left[12xe^{x^2+y^2}(2y^2+1)\right]dx$$

1) $d^3z = \left[4ye^{x^2+y^2}(2y^2+3)\right](dy)^3$

Series de Taylor y Mac Lau

1) a)
$$-\frac{16x^2+8\pi x(y-2)+\pi^2y^2-4\pi^2y+4\pi^2-8}{9}$$
; b) $\frac{2x(y+1)+y^2}{3}$

1) a)
$$-\frac{16x^2 + 8\pi x(y-2) + \pi^2 y^2 - 4\pi^2 y + 4\pi^2 - 8}{8}$$
; b) $\frac{2x(y+1) + y^2}{2}$
2) a) $\frac{e^2[x^3 + 3x^2(2y-1) + 6x(2y^2 - 2y+1) + 2(4y^3 - 6y^2 + 6y-1)]}{6}$; b) $-\left(x - \frac{\pi}{2}\right) - \left(y - \frac{\pi}{2}\right) + \frac{1}{6}\left[\left(x - \frac{\pi}{2}\right)^3 + \left(x - \frac{\pi}{2}\right)^2\left(y - \frac{\pi}{2}\right) + 3\left(x - \frac{\pi}{2}\right)\left(y - \frac{\pi}{2}\right)^2 + \left(y - \frac{\pi}{2}\right)^3\right]$

3
$$\left(x - \frac{\pi}{2}\right)^2 \left(y - \frac{\pi}{2}\right) + 3\left(x - \frac{\pi}{2}\right) \left(y - \frac{\pi}{2}\right)^2 + \left(y - \frac{\pi}{2}\right)^3$$
]
c) $-\frac{x^3}{6} + x - 2y^2$; d) $\frac{y[3x^2 + 3x(2-y) + 2y^2 - 3y + 6]}{6}$
3) a) Entorno del origen:

3) a) Entorno del origen:

$$F(0;0) = 0; \quad F'_{x}(0;0) = 0; \quad F'_{y}(0;0) = 1; \quad F''_{xx}(0;0) = 0; \quad F''_{xy}(0;0) = \ln(a); \quad F''_{yy}(0;0) = -1;$$

$$F'''_{xxx}(0;0) = 0; \quad F'''_{xxy}(0;0) = \ln^2(a); \quad F'''_{xyy}(0;0) = -\ln(a); \quad F'''_{yyy}(0;0) = 2$$

$$z \approx F(0;0) + F'_{x}(0;0)x + F'_{y}(0;0)y + \frac{1}{2!} \left[F''_{xx}(0;0)x^{2} + 2F''_{xy}(0;0)xy + F''_{yy}(0;0)y^{2} \right]$$

$$+ \frac{1}{3!} \left[F'''_{xxx}(0;0)x^{3} + 3F'''_{xxy}(0;0)x^{2}y + 3F'''_{xyy}(0;0)xy^{2} + F'''_{yyy}(0;0)y^{3} \right] + \cdots$$

$$= 0 + 0x + 1y + \frac{1}{2!} \left[0x^{2} + 2\ln(a)xy + (-1)y^{2} \right] + \frac{1}{3!} \left\{ 0x^{3} + 3\ln^{2}(a)x^{2}y + 3\left[-\ln(a)\right]xy^{2} + 2y^{3} \right\} + \cdots$$

$$= y + \frac{1}{2} \left[2xy\ln(a) - y^{2} + x^{2}y\ln^{2}(a) - xy^{2}\ln(a) \right] + \frac{1}{3}y^{3} + \cdots$$

b) Entorno del origen:

$$F(0;0) = 0; \quad F'_{x}(0;0) = 1; \quad F'_{y}(0;0) = 1; \quad F''_{xx}(0;0) = 0; \quad F''_{xy}(0;0) = 0; \quad F''_{yy}(0;0) = 0;$$

$$F'''_{xxx}(0;0) = F'''_{xxy}(0;0) = F'''_{xyy}(0;0) = F'''_{yyy}(0;0) = -1$$

$$z \approx 0 + 1x + 1y + \frac{1}{2!} \left[0x^2 + 2.0xy + 0y^2 \right] + \frac{1}{3!} \left[-1x^3 + 3(-1)x^2y + 3(-1)xy^2 + (-1)y^3 \right]$$
$$= x + y - \frac{\left(x^3 + 3x^2y + 3xy^2 + y^3 \right)}{3!} + \cdots$$

1) a) $\left(-\frac{4}{3}; \frac{1}{3}; -\frac{4}{3}\right)$ mínimo relativo; b) \nexists extremos relativos; c) $\left(-\frac{2}{3}; \frac{1}{3}; 0\right)$ mínimo relativo; d) (1;1;3) mínimo relativo; e) (1;0;-2) mínimo relativo; (-1;0;2) punto de ensilladura f) (1;4;-19)mínimo relativo; g) (0;0;5) máximo relativo; h) $(0;1;\frac{4}{3})$ máximo relativo; (0;3;0) punto de ensilladura; $(2;1;-\frac{20}{3})$ punto de ensilladura; (2;3;-8) mínimo relativo; $\left(-5;1;-\frac{1109}{12}\right)$ punto de ensilladura; $(-5;3;-\frac{375}{4})$ mínimo relativo; i) (0;0;0) mínimo relativo; j) $(-1;\frac{1}{2};\sqrt[4]{e^9})$ máximo relativo; k) (1;0;0) mínimo relativo; l) (0;0;0) punto de ensilladura; m) ∄ extremos relativos; n) (0; 0; 0) punto de ensilladura; $(\frac{3}{4}; \frac{3}{8}; -\frac{27}{32})$ mínimo relativo; o) $(\sqrt{2}; \sqrt{3}; -6\sqrt{3} - 4\sqrt{2} + 2)$ mínimo relativo; $(\sqrt{2}; -\sqrt{3}; 6\sqrt{3} - 4\sqrt{2} + 2)$ punto de ensilladura; $(-\sqrt{2}; \sqrt{3}; -6\sqrt{3} + 4\sqrt{2} + 2)$ punto de ensilladura; $(-\sqrt{2}; -\sqrt{3}; 6\sqrt{3} + 4\sqrt{2} + 2)$ máximo relativo.

- 2) k = 2, mínimo relativo.
- 3) k = 3, mínimo relativo.

Trabajo Práctico Nº 6: Integrales paramétricas

1) a)
$$y^2(e-1)$$
; b) $-6arctg\sqrt{y^2-16}$; c) x^2 ; d) $\frac{\pi\sqrt{y}}{2}$; e) $2\sqrt{3x} \cdot arctg\left(\frac{\sqrt{3x}}{3}\right) + x \cdot \ln(x^2+3x) - 2x$

2) a)
$$\frac{1}{\sqrt{x^3}} + \frac{1}{2}$$
; b) 2y

3) a)
$$\frac{\pi a^2}{2}$$
; b) $Ln(\frac{9}{8})$; c) 1

$\frac{\text{Trabajo Práctico N}^{\text{o}} \text{ 7: Integrales Múltiples}}{\pi}$

1)
$$\frac{n}{2}$$

2) a)
$$\frac{b^2}{3}$$
; b) $\sqrt{2} - 1$; c) $\frac{1}{10}$ d) 2π

3)
$$2a^{2}(\frac{\pi}{3}+\sqrt{3})$$

4) a)
$$\frac{abc}{6}$$
; b) $\frac{b^3\pi}{4} - \frac{b^3}{3}$; c) 36π

5)
$$x_G = 2$$
; $y_G = 3$; $M_x = \frac{27}{2}$; $M_y = 9$

6)
$$\frac{4}{3}(8-3\sqrt{3})a^3\pi$$

7) a)
$$I_x = \frac{63}{20}$$
; $I_y = \frac{729}{140}$; b) $I_x = \frac{1}{28}$; $I_y = \frac{1}{20}$
8) $z_G = \frac{15}{8}$; por simetría: $x_G = y_G = 0$

8)
$$z_G = \frac{15}{8}$$
; por simetría: $x_G = y_G = 0$

9)
$$\frac{96\pi}{5}$$
; 10) $\frac{64\pi}{3}$

Trabajo Práctico Nº 8: Geometría diferencial

1) a)
$$6\vec{i} + 5\vec{j} - 5\vec{k}$$
; $7\vec{i} - 10\vec{j} + 10\vec{k}$; b) -2 ; 7 ; -5 ; c) $-1\vec{i} + 13\vec{j} + 8\vec{k}$; $-4\vec{i} - 5\vec{j} - 6\vec{k}$; d) -19
2) a) $\frac{dr}{dt} = 4\vec{i} + 3\vec{j} - e\vec{k}$; $\frac{d^2r}{dt^2} = 4\vec{i} + 6\vec{j} - e\vec{k}$; $\left|\frac{dr}{dt}\right| = \sqrt{e^2 + 25}$; $\left|\frac{d^2r}{dt^2}\right| = \sqrt{e^2 + 52}$
b) $\frac{dr}{dt} = -2\vec{i} - 3\vec{k}$; $\frac{d^2r}{dt^2} = -3\vec{j}$; $\left|\frac{dr}{dt}\right| = \sqrt{13}$; $\left|\frac{d^2r}{dt^2}\right| = 3$
3) a) $\vec{A} = a_1(t)\vec{i} + a_2(t)\vec{j} + a_3(t)\vec{k}$; $\vec{B} = b_1(t)\vec{i} + b_2(t)\vec{j} + b_3(t)\vec{k}$

$$\frac{d}{dt}(\vec{A} \cdot \vec{B}) = \frac{d}{dt} \left[[a_1(t)\vec{i} + a_2(t)\vec{j} + a_3(t)\vec{k}] \cdot [b_1(t)\vec{i} + b_2(t)\vec{j} + b_3(t)\vec{k}] \right]$$

$$= \frac{d}{dt} [a_1(t) \cdot b_1(t) + a_2(t) \cdot b_2(t) + a_3(t) \cdot b_3(t)]$$

$$= \frac{d}{dt} [a_1(t) \cdot b_1(t)] + \frac{d}{dt} [a_2(t) \cdot b_2(t)] + \frac{d}{dt} [a_3(t) \cdot b_3(t)]$$

$$= a_1'(t) \cdot b_1(t) + a_1(t) \cdot b_1'(t) + a_2'(t) \cdot b_2(t) + a_2(t) \cdot b_2'(t) + a_3'(t) \cdot b_3(t)$$

$$+ a_3(t) \cdot b_3'(t)$$

$$= a_1'(t) \cdot b_1(t) + a_2'(t) \cdot b_2(t) + a_3'(t) \cdot b_3(t) + a_1(t) \cdot b_1'(t) + a_2(t) \cdot b_2'(t)$$

$$+ a_3(t) \cdot b_3'(t) = \frac{d}{dt}(\vec{A}) \cdot \vec{B} + \vec{A} \cdot \frac{d}{dt}(\vec{B})$$

b)
$$\vec{A} = a_1(t)\vec{i} + a_2(t)\vec{j} + a_3(t)\vec{k}$$
; ϕ : función escalar
$$\frac{d}{dt}(\phi\vec{A}) = \frac{d}{dt}[\phi a_1(t)\vec{i} + \phi a_2(t)\vec{j} + \phi a_3(t)\vec{k}]$$

$$= [\phi' a_1(t) + \phi a_1'(t)]\vec{i} + [\phi' a_2(t) + \phi a_2'(t)]\vec{j} + [\phi' a_3(t) + \phi a_3'(t)]\vec{k}$$

$$= \phi a_1'(t)\vec{i} + \phi a_2'(t)\vec{j} + \phi a_3'(t)\vec{k} + \phi' a_1(t)\vec{i} + \phi' a_2(t)\vec{j} + \phi' a_3(t)\vec{k}$$

$$= \phi [a_1'(t)\vec{i} + a_2'(t)\vec{j} + a_3'(t)\vec{k}] + [a_1(t)\vec{i} + a_2(t)\vec{j} + a_3(t)\vec{k}]\phi'$$

$$= \phi \frac{d}{dt}(\vec{A}) + \vec{A}\frac{d}{dt}(\phi)$$

4)
$$|\vec{v}| = 0$$
; $|\vec{a}| = 12\sqrt{12}$

$$5)\frac{6\sqrt{14}}{7}; -\frac{\sqrt{14}}{7}$$

6) a)
$$-\vec{j} + \vec{k}$$
; b) $\frac{-\sqrt{2}}{2}\vec{j} + \frac{\sqrt{2}}{2}\vec{k}$; c) Ec. recta tangente: $\vec{Y} = \vec{i} - \frac{\sqrt{2}}{2}t\vec{j} + (\frac{\sqrt{2}t}{2} + \frac{\pi}{2})\vec{k}$; d) $\vec{K}\left(\frac{\pi}{2}\right) = -\frac{1}{2}\vec{i}$; $R = 2$; e) $\vec{N}\left(\frac{\pi}{2}\right) = -\vec{i}$; Ec. la recta normal: $(1-t)\vec{i} + \frac{\pi}{2}\vec{k}$; f) $\vec{B}\left(\frac{\pi}{2}\right) = -\frac{\sqrt{2}}{2}\vec{j} - \frac{\sqrt{2}}{2}\vec{k}$; Ec. la recta binormal: $\vec{i} - \frac{\sqrt{2}}{2}t\vec{j} + (\frac{\pi}{2} - \frac{\sqrt{2}t}{2})\vec{k}$; g) Ec. plano normal: $-\frac{\sqrt{2}}{2}y + \frac{\sqrt{2}}{2}z - \frac{\pi\sqrt{2}}{4} = 0$; Ec. plano rectificante: $-x + 1 = 0$; Ec. plano osculador: $-\frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}z + \frac{\pi\sqrt{2}}{4} = 0$

Trabajo Práctico Nº 9: Campos escalares y vectoriales

1)
$$10\vec{i} - 4\vec{i} - 16\vec{k}$$

2)
$$-\frac{x}{r^3}\vec{i} - \frac{y}{r^3}\vec{j} - \frac{z}{r^3}\vec{k}$$

3)
$$-\frac{1}{2}\vec{i} + \frac{2}{2}\vec{j} + \frac{2}{2}\vec{k}$$

1)
$$10\vec{i} - 4\vec{j} - 16k$$

2) $-\frac{x}{r^3}\vec{i} - \frac{y}{r^3}\vec{j} - \frac{z}{r^3}\vec{k}$
3) $-\frac{1}{3}\vec{i} + \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$
4) $-2x + y + 3z - 1 = 0$
5) $\frac{376}{7}$
6) $-\frac{20}{9}$

5)
$$\frac{376}{-}$$

$$(6) - \frac{2}{100}$$

7)
$$2x^{2}$$

8) a)
$$2x^3yz^3(2z-x)$$
; b) $-2x^4yz^3 + 6x^3yz^4 + 8xy^2z^4$

c)
$$2yz(2x+z)\vec{i} - x^2y(2x+z)\vec{j} + xz^2(2x+z)\vec{k}$$

d)
$$2x^2yz^3(2y-z^2)\vec{j} - 4x^2yz^3(xy+z)\vec{k}$$

e)
$$(-6x^4y^2z^2 - 2x^3z^5)\vec{i} + x^2(4yz^5 - 12y^2z^3)\vec{j} + (4x^3y^2z^3 + 4x^2yz^4)\vec{k}$$

$$9)^{-7}/3$$

$$10) \ 8x + 8y - z - 12 = 0$$

Apéndice elaborado por Ing. Manuel Zeniquel – 2013.