ECUACIONES EN DIFERENCIAS
LINEALES, DE PRIMER ORDEN, NO HOMOGENEAS
Y CON COEFICIENTES CONSTANTES
UNA APLICACIÓN EN ECONOMÍA
LA OFERTA Y LA DEMANDA. EL MODELO DE LA TELARAÑA

Prof. Cra. Carmen Rescala

Una sociedad organizada económicamente tiene un sistema económico que la caracteriza, el que se puede definir como un conjunto de relaciones básicas, técnicas e institucionales que determinan los cauces de su actividad y condicionan sus decisiones.

El sistema de economía de mercado es aquél que se basa en el funcionamiento del mercado, cuyo mecanismo es el que sirve para dar respuestas a las clásicas preguntas de una economía mixta: ¿Qué producir?, ¿Cómo producir? y ¿Para quién producir?.

Cuando hablamos de la Teoría de Mercado, hablamos del juego de la demanda y la oferta y de cómo la interacción de ambas determina la cantidad y el precio de equilibrio de ese mercado y para un determinado momento, esos valores de equilibrios son los que permiten una correcta asignación de los recursos.

Según sea el tipo de mercado y las políticas gubernamentales que existan y que influyan en él, en la toma de las decisiones que definen qué, cómo y para quién producir, se combinan los diversos factores de la producción, los que luego permiten equilibrar el mercado en el libre juego de la demanda y la oferta. Los mercados pueden ser transparentes u opacos, libres o intervenidos, de competencia perfecta o imperfecta.

El MERCADO es la institución creada por la sociedad en la que se intercambian libremente los bienes y servicios y también los factores productivos. Cuando en ese intercambio se utiliza el dinero hablamos de compradores y vendedores, en los mercados en los que se intercambian productos hablamos de consumidores y productores.

En el mercado, los compradores y vendedores se ponen de acuerdo para establecer qué cantidad determinada de producto cambiarán por una cantidad de dinero determinada. Para que se realicen transacciones en los distintos tipos de mercado, los vendedores y compradores, los productores y consumidores, operan unos frente a otros, sabiendo que algunas operaciones serán simples y otras complejas, que algunas transacciones serán directas, otras largas y difíciles, pero que es siempre el precio el que permite que las transacciones se realicen.

En un sistema de economía de mercado, las actividades que se desarrollan están sometidas al libre juego de la oferta y la demanda, y las curvas que representan a ambas sirven para explicar lo que ocurre en el cuando existen variaciones de precio y cantidad, ya sea a corto o a largo plazo, o qué influencias ejercen algunas decisiones gubernamentales (como la fijación de impuestos) al determinar el precio, u otras medidas que pueden interferir en las leyes de demanda y oferta.

Si analizamos el comportamiento de las leyes de la demanda y la oferta en un mercado para un solo bien, y bajo las condiciones de competencia perfecta, podemos decir que las cantidades que los consumidores adquieren (demanda) del bien dependen de diversos factores, tales como las preferencias, el ingreso, el precio de ese bien y el de los bienes sustitutos o competitivos, etc. Para nuestro análisis gráfico haremos uso de la cláusula llamada CETERIS PARIBUS, la que considera constante todos los factores, excepto el precio del bien en cuestión.

La función de demanda-precio muestra, ceteris paribus, la relación existente entre la cantidad demandada de un bien y su precio.
Si nos situamos del lado de la oferta, podemos decir que son varios los factores que la condicionan: la tecnología, los precio de los factores de la producción (tierra, trabajo, capital, etc.), el precio de mercado del bien a ofrecer, etc. Nuevamente haremos uso de la condición ceteris –paribus para considerar constante a los factores nombrados, salvo el precio del bien.

La función de oferta es entonces la que muestra la relación que existe entre el precio del bien y la cantidad que un productor desea ofrecer de ese bien por unidad de tiempo.

Cuando consumidores y productores de un determinado bien dan a conocer sus planes de consumo y producción y presentan sus curvas de demanda y oferta, podemos observar que sólo en la intersección de ellas las expectativas de ambos coinciden y se obtiene en ese punto la cantidad y el precio de equilibrio de ese bien en ese mercado. El precio de equilibrio es aquel para el cual la cantidad ofertada es igual a la cantidad demandada.

Para alterar este equilibrio deben actuar factores exógenos.

Cuando no hacemos uso de la condición ceteris-paribus y consideramos la variación de todos o algunos de los factores determinantes de la demanda y la oferta, podemos apreciar que las curvas que las representan sufren desplazamientos o ciertas variaciones que son propias del análisis económico y que se estudian en los cursos correspondientes, pero no en este caso.

El análisis de demanda y oferta de un bien que se realiza sin considerar las influencias de los diversos factores, salvo el precio del mismo, (haciendo uso de la cláusula ceteris-paribus) sobre las expectativas de consumidores y productores, y estableciendo que tanto la demanda como la oferta del bien en un periodo dependen del precio del bien en ese periodo, es un análisis estático, que no tiene en cuenta la variación temporal del comportamiento de los consumidores y productores. El análisis estático no brinda explicaciones sobre el comportamiento de la oferta de aquellos productos que han de estar en el mercado antes de que se determine su precio, -caso de los productos agrícolas o de las carnes- y por lo tanto el precio que se considera es el del período anterior.

El análisis económico que interpreta el comportamiento temporal de la demanda y la oferta como herramientas para la decisión de producir y ofertar cuando el precio que se toma no es el del período, sino es el del período o períodos anteriores, es un análisis dinámico.

Ejemplos clásicos para el análisis dinámico son la producción agrícola y la producción ganadera. En la agrícola la decisión de producir se hace con anticipación al período de siembra, y ésta, antes que la cosecha, y ésta, antes que la venta del producto.

Por lo tanto, la oferta de los productores o su decisión de producir no puede basarse en el precio del período actual (t), ya que esa producción no estará disponible para la venta hasta el período siguiente (t+1). Lo mismo ocurre con la producción ganadera, en
la que los ganaderos se fijan en el precio que rige hoy para decidir la cantidad que ofertarán en el mercado en el período siguiente.

Ese es el motivo por el cual la oferta en ambos productores es una función desfasada o curva que opera con retraso o retardo y que relaciona el precio de este periodo con la cantidad del periodo siguiente. **Entiéndase por período el tiempo necesario para la producción del bien.**

Si consideramos el mercado de un único bien, perecedero, para el cual toda la producción de un período será colocada en el mercado, podemos expresar la cantidad ofertada en el período t como una función del precio del período t-1, así:

$$Q_{ot} = O(P_{t-1})$$

La cantidad demandada de estos productos vendidos hoy en el mercado, depende del precio de hoy y su función es:

$$Q_{dt} = D(P_t)$$

La cantidad demandada interactúa con la cantidad ofertada del bien en cuestión generando un interesante modelo de dinámica de precios.

Tomando las funciones lineales de oferta (desfasada) y demanda (no desfasada) y suponiendo que en cada periodo el precio se establece al nivel en que se vacía el mercado, podemos presentar el siguiente modelo, llamado modelo de la TELARANCHA, el cual ilustrará el uso de las ecuaciones en diferencias, lineales, con coeficientes constantes y no homogéneas. Este modelo consta de las tres siguientes ecuaciones:

$$
\begin{align*}
Q_{dt} &= Q_{ot} \\
Q_{dt} &= \alpha - \beta P_t \\
Q_{ot} &= \gamma + \delta P_{t-1}
\end{align*}
$$

Para hallar la trayectoria temporal del precio, se resuelve este sistema, procediendo de la siguiente manera: sustituimos las dos últimas ecuaciones en la primera y obtenemos la ecuación en diferencias:

$$\beta P_t + \delta P_{t-1} = \alpha + \gamma$$

Si adelantamos los subíndices de tiempo en un período y dividimos por β la expresión tendremos:

$$P_{t+1} = \frac{\alpha + \gamma}{\beta} P_t$$

ecuación que por lo desarrollado en la teoría de ecuaciones en diferencias se escribe:

$$P_t = \left(-\frac{\delta}{\beta} \right)^t P_0 + \frac{\alpha + \gamma}{\beta} \left(1 - \left(-\frac{\delta}{\beta} \right)^t \right)$$

luego de varios cálculos algebraicos, se tiene:

$$P_t = \left(P_0 - \frac{\alpha + \gamma}{\beta + \delta} \right) \left(-\frac{\delta}{\beta} \right)^t + \frac{\alpha + \gamma}{\beta + \delta}$$

donde P_0 es el precio inicial y la expresión $\frac{\alpha + \gamma}{\beta + \delta}$ es la integral particular, que tomamos como el precio de equilibrio intertemporal. Entonces, la constante
\[\bar{P} = P_e = \frac{\alpha + \gamma}{\beta + \delta} \] es un equilibrio estacionario o estable. Sustituyendo en la ecuación anterior, es:

El signo de \((P_0 - \bar{P})\) dependerá de la trayectoria temporal, según ésta comience por encima o por debajo del equilibrio temporal, (éste es el efecto simétrico de la constante o coeficiente de la expresión que aparece elevada a la t), en tanto que su magnitud indicará cuánto por arriba o por debajo (efecto escala).

Según la teoría correspondiente y las especificaciones de nuestro modelo, la expresión \(-\frac{\delta}{\beta}\) será negativa, con un valor mayor, igual o menor que \(-1\), dependiendo para ello de que \(\delta\) sea menor, igual o mayor que \(\beta\). Por ser negativa la base de la potencia, la trayectoria temporal será oscilante, permitiendo el modelo de la telaraña, pudiendo ser la oscilación: explosiva si \(\delta<\beta\), lo que significa que la base de la potencia es \(<\) que \(-1\), uniforme si \(\delta=\beta\), la base de la potencia es igual a \((-1)\), o amortiguada, si \(\delta<\beta\), lo que significa que la base de la potencia es mayor que \((-1)\).

En el gráfico anterior se representaron las curvas de demanda y oferta en un equilibrio estable, donde la intersección de las curvas nos da el precio y la cantidad de equilibrio, la que se mantiene periodo tras periodo (análisis estático). Si por factores exógenos que actúan sobre la demanda o la oferta ese equilibrio se rompe, se pone en marcha un nuevo proceso para llevar el mercado a un nuevo equilibrio o alejarlo de él.

Veamos ahora gráficamente que ocurre en un caso dinámico, con las diferentes trayectorias temporales del precio.

Supongamos que se trata del mercado agrícola, que representamos las curvas de demanda y de oferta, que \(\delta<\beta\) (la curva de oferta más aplanada que la demanda), que el equilibrio se encuentra en \((P_e, Q_e)\) y que por factores económicos, en el tiempo 1, el precio se aumenta y pasa del de equilibrio \(P_e\) al \(P_0\). Este precio, \(P_0\), determina en el período 1 una cantidad ofrecida \(Q_1\), la que iguala a la demanda (se vacía el mercado) en el precio \(P_1\), el equilibrio del momento 1 será \((P_1, Q_1)\).

El precio \(P_1\) es el que orienta las decisiones de producción en el período 2, pero da lugar a que la cantidad ofrecida sea \(Q_2\), esta cantidad igualará a la demanda (se produce el equilibrio de mercado) cuando el precio sea \(P_2\). Luego en el período 2, el equilibrio estará en \((P_2, Q_2)\). Nuevamente el precio \(P_2\) orienta las decisiones del período tres, en el cual la cantidad ofrecida es \(Q_3\), que iguala a la demanda en el precio \(P_3\), y el equilibrio se encuentra en \((P_3, Q_3)\).

En este proceso se reducen las oscilaciones de precios y cantidades a medida que transcurre el tiempo, lo que nos permite decir que existe una convergencia hacia el punto de equilibrio. De este proceso resulta un tejido de telaraña centrípeta.
Cuando $\delta=\beta$ (la curva de oferta más empinada que la demanda), la interacción de la oferta y la demanda produce una oscilación explosiva. Si el equilibrio se encuentra en (P_e, Q_e) y por factores económicos, en el tiempo 1, el precio se aumenta y pasa del de equilibrio P_e al P_0, P_0, determina en el periodo 1 una cantidad ofrecida Q_1 que iguala a la demanda (se vacía el mercado) en el precio P_1, el equilibrio del momento 1 será (P_1, Q_1). El precio P_1 es el que orienta las decisiones de producción en el periodo 2, pero da lugar a que la cantidad ofrecida sea Q_2, esta cantidad igualará a la demanda (se produce el equilibrio de mercado) cuando el precio sea P_2. Luego en el periodo 2, el equilibrio estará en (P_2, Q_2). Nuevamente el precio P_2 orienta las decisiones del periodo 3, en el cual la cantidad ofrecida es Q_3, que iguala a la demanda en el precio P_3, y el equilibrio se encuentra en (P_3, Q_3). En este proceso nos alejamos cada vez más del equilibrio y las oscilaciones de precio y cantidad se vuelven más violentas a medida que transcurre el tiempo. En este caso existe una divergencia del punto de equilibrio.

Un ejemplo explosivo lo encontramos en mercados agrícolas en los que existen muchos pequeños productores, en esos mercados, por su desconexión e incluso miopía no es posible percibir el efecto de los precios sobre las rentas agrícolas.

Cuando las rectas de demanda y oferta tienen la misma pendiente, el resultado es una telaraña perfecta y según sea la fuerza de la perturbación o factor influyente, el mercado oscilará indefinidamente alrededor del punto de equilibrio, sin acercarse ni alejarse de
él, sin ampliar ni amortiguar la violencia de las oscilaciones. Vemos a continuación el gráfico.

Si lo que deseamos es conocer la trayectoria temporal de la cantidad Q_t, procedemos de la siguiente forma: en las ecuaciones de demanda y oferta despejamos la variable P, y escribimos solamente Q, ya que en el equilibrio la cantidad demandada iguala a la ofertada. Por igualación es

$$-Q_t + \frac{P}{\beta} = 1$$

algebraicamente obtenemos:

$$Q_{t+1} = \left(\frac{\delta}{\beta}\right) Q_t + \left(\frac{\alpha\delta - \beta\gamma}{\beta}\right)$$

y aplicando los conceptos de ecuaciones en diferencia lineales de primer orden es:

$$Q_t = \left(\frac{\delta}{\beta}\right) Q_0 + \frac{\alpha\delta - \beta\gamma}{\beta + \delta} \left[1 - \left(\frac{\delta}{\beta}\right)^t\right]$$

ecuación que se transforma en:

$$Q_t = \left(\frac{\delta}{\beta}\right)^t Q_0 - \frac{\alpha\delta - \beta\gamma}{\beta + \delta} + \frac{\alpha\delta - \beta\gamma}{\beta + \delta}$$

y en la que la expresión:

$$\frac{\alpha\delta - \beta\gamma}{\beta + \delta} es \quad \bar{Q} \quad o \quad cantidad \ de \ equilibrio$$

luego la trayectoria temporal de Q está dada por la ecuación en diferencia:

$$Q_t = (Q_0 - \bar{Q}) \left(\frac{\delta}{\beta}\right)^t + \bar{Q}$$

A continuación se presenta un práctico, con la solución de ejercicios que figuran en el libro “METODOS FUNDAMENTALES DE ECONOMIA MATEMATICA” de
Alpha CHIANG, tercera edición, capítulo dieciséis, punto 16.4. .y cuyos enunciados han sido modificados.

Dadas las siguientes demandas y ofertas para modelos de telaraña, hallar el precio y la cantidad del equilibrio intertemporal y determinar el tipo de trayectoria temporal del precio y de la cantidad. En cada ejemplo hacer la gráfica de la telaraña correspondiente, usando el diagrama de fase en lugar de las curvas de demanda y oferta.

Ejemplo 1) \(Q_{dt} = 18 - 3P_t \land Q_{ot} = -3 + 4P_{t-1} \)

Ejemplo 2) \(Q_{dt} = 22 - 3P_t \land Q_{ot} = -2 + P_{t-1} \)

Ejemplo 3) \(Q_{dt} = 19 - 6P_t \land Q_{ot} = -5 + 6P_{t-1} \)

Sólo se presentan los cálculos correspondientes al ejemplo 1, por ser la técnica de resolución la misma para los tres ejemplos.

Ejemplo 1) \(Q_{dt} = 18 - 3P_t \land Q_{ot} = 3 + 4P_{t-1} \)

Se representan esta función y la función \(P_{t-1} = P_t \) en un mismo gráfico cartesiano, en él se dibuja la telaraña, que en este ejemplo muestra una trayectoria temporal divergente. Este es el llamado Diagrama de Fase. Gráfico 1.

Por lo desarrollado en la teoría, en la ecuación \(7 - \frac{4}{3}P_{t-1} = P_t \) hacemos:

\[
\bar{P} = P_e \left[\frac{16 + 3}{3 + 4} \right] = 3 \land \left[\frac{\delta}{\beta} \right] = \left(\frac{-4}{3} \right)
\]

tendremos: \(P_t = P_0 - 3 \left(\frac{4}{3} \right)^t + 3 \).

Como valor inicial para reemplazar en la fórmula se consideró \(P_0 = 4 \), luego es

\[
\begin{align*}
P_t & = \left(\frac{4}{3} \right)^t + 3 \\
\text{Gráfico 2.}
\end{align*}
\]

Como explicación complementaria y anexa para el gráfico de la telaraña explosiva de la página 5, decimos: si el valor inicial \(P_0 = 4 \) es \(Q_{o1} = 13 \) (cantidad ofertada 1). La cantidad demandada que iguala a esa cantidad ofertada determina un precio \(P_1 = 1,67 \).

Para hallarlo se procede de la siguiente forma: \(Q_d = 18 - 3P_1 \Rightarrow P_1 = \frac{13 - 18}{-3} \).

Con el precio \(P_1 = 1,67 \) es \(Q_{o2} = -3 + 4\left(\frac{5}{3} \right) = \frac{11}{3} = 3,67 \), la cantidad demandada que iguala determina el precio \(P_2 \):

\[
\frac{11}{3} = 18 - 3P_2 \Rightarrow P_2 = \frac{-11 + 18}{3} = \frac{7}{9}.
\]
Para \(P_2 \), la cantidad ofertada es \(Q_{o3} = -3 + 4 \left(\frac{7}{9} \right) = 16 \frac{1}{9} = 16.11 \). La cantidad demandada que la iguala define el precio \(P_3 = 0.63 \); el cual ya no podemos considerar porque con él la cantidad ofertada se hace negativa, \(Q_{o4} = -3 + 4 \times (0.63) = -0.48 \), lo que es imposible en el mercado de bienes.

También es conveniente representar la trayectoria temporal de la cantidad, trayectoria que será divergente, como la del precio. Para esta representación ocupamos la fórmula:

\[
Q_t = (Q_0 - 9) \left(-\frac{4}{3} \right)^t + 9, \quad \text{porque} \quad Q = Q_e = \frac{\alpha \delta - \beta \gamma}{\beta + \delta} = \frac{18.4 - 3.3}{3 + 4} = 9, \quad \text{y partimos para} \quad Q \text{ del valor } Q_0 = 10.
\]

Gráfico 3.

Los gráficos que se presentan en los ejemplos 1, 2 y 3 del práctico, fueron realizados en el programa Matemática, y luego en Excel.

EJEMPLO N° 1

GRÁFICO 1

\[
\delta = 4 \\
\beta = 3 \\
\]

\[
P_t = -\frac{4}{3} P_{t-1} + 7
\]

GRÁFICO 2

\[
P_t = (P_0 - \bar{P}) \left(-\frac{\delta}{\beta} \right) + \bar{P} = (4 - 3) \left(-\frac{4}{3} \right) + 3 = \left(-\frac{4}{3} \right) + 3
\]
<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i</td>
<td>4</td>
<td>1.67</td>
<td>4.77</td>
<td>0.63</td>
<td>6.16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

\[Q = \left(Q_0 - \bar{Q} \right) \left(\frac{\alpha}{\beta} \right) + \bar{Q} \left(10 + 9 \left(\frac{4}{3} \right)^{\gamma} \right) + 9 = \left(\frac{4}{3} \right)^{\gamma} + 9 \]
\[\delta = 1 \]
\[\beta = 3 \]
\[P_i = -\frac{1}{3}P_{i-1} + 8 \]

GRÁFICO 2

\[P_i = (P_i - \bar{P}) \left(-\frac{\delta}{\beta} \right) + \bar{P} = (8 - 6) \left(-\frac{1}{3} \right) + 6 = 2 \left(-\frac{1}{3} \right) + 6 \]

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>8</td>
<td>5.33</td>
<td>6.22</td>
<td>5.93</td>
<td>6.025</td>
<td>5.992</td>
<td>6.003</td>
<td>5.999</td>
<td>6.003</td>
<td>5.999</td>
</tr>
</tbody>
</table>

GRÁFICO 3

\[Q_t = (Q_0 - \bar{Q}) \left(-\frac{\delta}{\beta} \right) + \bar{Q} = (6 - 4) \left(-\frac{1}{3} \right) + 4 = 2 \left(-\frac{1}{3} \right) + 4 \]
<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

EJEMPLO Nº 3

GRÁFICO 1

\[\delta = 1 \]

\[\beta = \]

\[P_t = -P_{t-1} + 4 \]

GRÁFICO 2
\[P_i = (P_0 - \bar{P}) \left(-\frac{\delta}{\bar{P}} \right)^i + \bar{P} = (3 - 2)(-1)^i + 2 = (-1)^i + 2 \]

<table>
<thead>
<tr>
<th></th>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_i)</td>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

\[Q_i = (Q_0 - \bar{Q}) \left(-\frac{\delta}{\bar{Q}} \right)^i + \bar{Q} = (9 - 7)(-1)^i + 7 = 2(-1)^i + 7 \]

<table>
<thead>
<tr>
<th></th>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_i)</td>
<td></td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

GRÁFICO 3
\[
\delta = -4 \\
\beta = 3 \\
C = 7
\]

\[
P_t = -\frac{\delta}{\beta} p_{t-1} + C \quad (1)
\]

\[
P_0 = 4 \\
P_e = 3 \\
\delta = -4 \\
\beta = 3
\]

\[
P_t = (p_0 - p_e) \left(\frac{\delta}{\beta} \right)^t + p_e \quad (2)
\]

\[
Q_t = (Q_o - Q_e) \left(\frac{\delta}{\beta} \right)^t + Q_e \quad (3)
\]

tomamos \(t \) hasta \(t=8 \)

para evitar valores negativos
Ejemplo N° 2

\[\dot{\delta} = -1 \]
\[\beta = 3 \]
\[c = 8 \]

\[P_t = -\frac{\delta}{\beta} P_{t-1} + C \quad (1) \]

\[P_0 = 8 \]
\[P_e = 6 \]
\[\delta = -1 \]
\[\beta = 3 \]

\[P_t = (P_0 - P_e) \left(-\frac{\delta}{\beta} \right) + P_e \quad (2) \]

\[Q_0 = 6 \]
\[\delta = -1 \]
\[\beta = 3 \]
\[Q_e = 4 \]

\[Q_t = (Q_0 - Q_e) \left(-\frac{\delta}{\beta} \right) + Q_e \quad (3) \]
Ejemplo N° 3

\[P_t = \frac{\delta}{\beta} P_{t-1} + C \quad (1) \]

\[P_0 = 3 \]
\[P_e = 2 \]
\[\delta = -1 \]
\[\beta = 1 \]
\[P_e = 2 \]

\[P_t = (P_0 - P_e) \left(\frac{\delta}{\beta} \right)^t + P_e \quad (2) \]

\[Q_{t-1} = (Q_0 - Q_e) \left(\frac{\delta}{\beta} \right)^t + Q_e \quad (3) \]
BIBLIOGRAFIA

